Multi-Scale Modeling of the Impact Response of a Strain-Rate Sensitive High-Manganese Austenitic Steel

نویسندگان

  • Orkun Onal
  • Cemre Ozmenci
  • Demircan Canadinc
چکیده

*Correspondence: Demircan Canadinc, Rumeli Feneri Yolu, Sariyer, Istanbul, Turkey e-mail: [email protected] A multi-scale modeling approach was applied to predict the impact response of a strain rate sensitive high-manganese austenitic steel. The roles of texture, geometry, and strain rate sensitivity were successfully taken into account all at once by coupling crystal plasticity and finite element (FE) analysis. Specifically, crystal plasticity was utilized to obtain the multi-axial flow rule at different strain rates based on the experimental deformation response under uniaxial tensile loading.The equivalent stress – equivalent strain response was then incorporated into the FE model for the sake of a more representative hardening rule under impact loading.The current results demonstrate that reliable predictions can be obtained by proper coupling of crystal plasticity and FE analysis even if the experimental flow rule of the material is acquired under uniaxial loading and at moderate strain rates that are significantly slower than those attained during impact loading. Furthermore, the current findings also demonstrate the need for an experiment-based multi-scale modeling approach for the sake of reliable predictions of the impact response.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of Mechanical Properties of TWIP Steels using Artificial Neural Network Modeling

In recent years, great attention has been paid to the development of high manganese austenitic TWIP steels exhibiting high tensile strength and exceptional total elongation. Due to low stacking fault energy (SFE), cross slip becomes more difficult in these steels and mechanical twinning is then the favored deformation mode besides dislocation gliding. Chemical composition along with processing ...

متن کامل

Stacking Fault Energy and Microstructural Insight into the Dynamic Deformation of High-Manganese TRIP and TWIP Steels

The dynamic behavior of three high manganese steels with very different stacking faultenergy (SFE) values (4-30 mJ/m2) were studied using high strain rate torsional tests. The hotrolledmicrostructure of the steel with the lowest SFE of 4 mJ/m2 consisted of a duplex mixture ofaustenite and ε-martensite, but those of the other two steels were fully austenitic. The deformedmicrostructures were stu...

متن کامل

TWIP-effect and thermo-mechanical treatment of a stable high-manganese austenitic stainless steel

Austenitic carbon steels that exhibit excellent mechanical properties due to the twinning-induced plasticity effect have been studied extensively. On the other hand, austenitic stainless steels usually achieve good strength and ductility via transformation-induced plasticity. However, relying on martensite transformation for strength may cause problems such as delayed cracking. Therefore, the t...

متن کامل

Effect of annealing process on microstructure and mechanical properties of high manganese austenitic TWIP steel

In the present study, the influence of annealing temperature on mechanical properties and the microstructure of a high manganese austenitic steel (Fe-30Mn-4Al-4Si-0.5C) was investigated. X-ray diffractometry, optical and scanning electron microscopy, hardness and tensile tests were used to analyze the relationship between mechanical properties and microstructure after annealing process. The res...

متن کامل

Influence of High Strain Rates on the Mechanical Behavior of High-Manganese Steels

In this work, dynamic mechanical properties of three high-manganese steels with TRIP/TWIP or fully TWIP characteristics are studied. High strain rate experiments in the range of true strain rates between ~500 and 1800 /s are conducted using a dynamic torsional testing setup. All the three steels show a positive strain rate sensitivity in the intermediate range of strain rates (up to 500 /s). Bu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014